TABLE I. Specific volume of water, cm3/g.

|        |         |         |         |         |         | all the second |           |         | 14.7    |         |         |         |         |        |
|--------|---------|---------|---------|---------|---------|----------------|-----------|---------|---------|---------|---------|---------|---------|--------|
| P,BARS |         |         |         |         |         |                | TEMPERATU | IRE. C  | 77      |         |         |         |         |        |
|        | 25.00   | 30.00   | 40.00   | 50.00   | 60.00   | 70.00          | 80.00     | 90.00   | 100.00  | 110.00  | 120.00  | 130.00  | 140.00  | 150.00 |
| 0.     | 1.00301 | 1.00442 | 1.00789 | 1.01215 | 1.01714 | 1.02279        | 1.02907   | 1.03598 | 1.04350 | 1.05165 | 1.06042 | 1.06985 | 1.07996 | 1.0908 |
| 200.   | 0.99419 | 0.99565 | 0.99920 | 1.00344 | 1.00830 | 1.01384        | 1.01988   | 1.02643 | 1.03360 | 1.04131 | 1.04956 | 1.05843 | 1.06789 | 1.0778 |
| 400.   | 0.98582 | 0.98738 | 0.99098 | 0.99523 | 1.00002 | 1.30542        | 1.01126   | 1.01755 | 1.02438 | 1.03171 | 1.03951 | 1.04790 | 1.05675 | 1.066  |
| 600.   | 0.97790 | 0.97955 | 0.98322 | 0.98747 | 0.99216 | 0.99747        | 1.00312   | 1.00918 | 1.01575 | 1.02276 | 1.03023 | 1.03820 | 1.04658 | 1.0553 |
| 800.   | 0.97044 | 0.97213 | 0.97588 | 0.98011 | 0.98478 | 0.98996        | 0.99543   | 1.00134 | 1.00769 | 1.01445 | 1.02157 | 1.02918 | 1.03710 | 1.045  |
| 1000.  | 0.96337 | 0.96509 | 0.96891 | 0.97315 | 0.97774 | 0.98285        | 0.98821   | 0.99393 | 1.00006 | 1.00658 | 1.01341 | 1.02073 | 1.02825 | 1.036  |
| 1200.  | 0.95665 | 0.95841 | 0.96226 | 0.96650 | 0.97107 | 0.97604        | 0.98131   | 0.98688 | 0.99282 | 0.99915 | 1.00574 | 1.01272 | 1.01998 | 1.027  |
| 1400.  | 0.95024 | 0.95206 | 0.95596 | 0.96016 | 0.96469 | 0.96960        | 0.97477   | 0.98019 | 0.98599 | 0.99209 | 0.99847 | 1.00520 | 1.01214 | 1.019  |
| 1600.  | 0:94412 | 0.94596 | 0.94991 | 0.95408 | 0.95864 | 0.96344        | 0.96845   | 0.97383 | 0.97943 | 0.98537 | 0.99156 | 0.99807 | 1.00478 | 1.011  |
| 1800.  | 0.93828 | 0.94016 | 0.94413 | 0.94832 | 0.95280 | 0.95755        | 0.96252   | 0.96775 | 0.97325 | 0.97902 | 0.98499 | 0.99134 | 0.99782 | 1.004  |
| 2000.  | 0.93271 | 0.93460 | 0.93857 | 0.94277 | 0.94719 | 0.95192        | 0.95678   | 0.96191 | 0.96728 | 0.97288 | 0.97871 | 0.98487 | 0.99115 | 0.997  |
| 2200.  | 0.92737 | 0.92928 | 0.93327 | 0.93747 | 0.94185 | 0.94649        | 0.95132   | 0.95630 | 0.96156 | 0.96706 | 0.97272 | 0.97870 | 0.98482 | 0.991  |
| 2400.  | 0.92220 | 0.92414 | 0.92818 | 0.93231 | 0.93670 | 0.94130        | 0.94603   | 0.95096 | 0.95609 | 0.96150 | 0.96701 | 0.97282 | 0.97878 | 0.984  |
| 2600.  | 0.91727 | 0.91922 | 0.92320 | 0.92738 | 0.93168 | 0.93627        | 0.94093   | 0.94578 | 0.95083 | 0.95608 | 0.96150 | 0.96715 | 0.97296 | 0.978  |
| 2800.  | 0.91252 | 0.91446 | 0.91850 | 0.92264 | 0.92693 | 0.93142        | 0.93606   | 0.94077 | 0.94578 | 0.95091 | 0.95619 | 0.96175 | 0.96736 | 0.973  |
| 3000.  | 0.90792 | 0.90990 | 0.91395 | 0.91805 | 0.92235 | 0.92679        | 0.93135   | 0.93601 | 0.94089 | 0.94598 | 0.95141 | 0.95652 | 0.96206 | 0.967  |
| 3200.  | 0.90351 | 0.90547 | 0.90949 | 0.91361 | 0.91782 | 0.92227        | 0.92675   | 0.93137 | 0.93616 | 0.94113 | 0.94623 | 0.95148 | 0.95688 | 0.962  |
| 3400.  | 0.89925 | 0.90121 | 0.90527 | 0.90928 | 0.91353 | 0.91789        | 0.92236   | 0.92689 | 0.93163 | 0.93648 | 0.94147 | 0.94668 | 0.95192 | 0.957  |
| 3600.  | 0.89513 | 0.89710 | 0.90111 | 0.90518 | 0.90935 | 0.91371        | 0.91805   | 0.92260 | 0.92720 | 0.93204 | 0.93692 | 0.94199 | 0.94719 | 0.952  |
| 3800.  | 0.89114 | 0.89309 | 0.89714 | 0.90116 | 0.90531 | 0.90960        | 0.91397   | 0.91836 | 0.92298 | 0.92766 | 0.93252 | 0.93749 | 0.94255 | 0.947  |
| 4000.  | 0.88725 | 0.88923 | 0.89321 | 0.89726 | 0.90137 | 0.90565        | 0.90996   | 0.91432 | 0.91882 | 0.92349 | 0.92821 | 0.93314 | 0.93810 | 0.943  |
| 4200.  | 0.88349 | 0.88545 | 0.88948 | 0.89349 | 0.89761 | 0.90175        | 0.90605   | 0.91037 | 0.91484 | 0.91940 | 0.92408 | 0.92887 | 0.93377 | 0.938  |
| 4400.  | 0.87984 | 0.88184 | 0.88581 | 0.88982 | 0.89386 | 0.89807        | 0.90226   | 0.90656 | 0.91092 | 0.91546 | 0.92000 | 0.92480 | 0.92956 | 0.934  |
| 4600.  | 0.87630 | 0.87826 | 0.88226 | 0.88622 | 0.89029 | 0.89442        | 0.89861   | 0.90281 | 0.90717 | 0.91159 | 0.91615 | 0.92076 | 0.92551 | 0.9304 |
| 4800.  | 0.87287 | 0.87484 | 0.87879 | 0.88278 | 0.88677 | 0.89089        | 0.89497   | 0.89919 | 0.90345 | 0.90786 | 0.91230 | 0.91693 | 0.92153 | 0.926  |
| 5000.  | 0.86949 | 0.87147 | 0.87544 | 0.87937 | 0.88339 | 0.88743        | 0.89155   | 0.89564 | 0.89991 | 0.90422 | 0.90863 | 0.91313 | 0.91772 | 0.922  |
| 5200.  | 0.86626 | 0.86820 | 0.87214 | 0.87606 | 0.88002 | 0.88411        | 0.88814   | 0.89222 | 0.89639 | 0.90070 | 0.90498 | 0.90950 | 0.91395 | 0.918  |
| 400.   | 0.86307 | 0.86505 | 0.86894 | 0.87285 | 0.87677 | 0.88080        | 0.88488   | 0.88886 | 0.89303 | 0.89724 | 0.90152 | 0.90589 | 0.91034 | 0.914  |
| 600.   | 0.85996 | 0.86194 | 0.86585 | 0.86970 | 0.87365 | 0.87762        | 0.88158   | 0.88561 | 0.88969 | 0.89387 | 0.89812 | 0.90245 | 0.90679 | 0.911  |
| 800.   | 0.85697 | 0.85892 | 0.86279 | 0.86667 | 0.87052 | 0.87450        | 0.87845   | 0.88240 | 0.88646 | 0.89060 | 0.89475 | 0.89905 | 0.90334 | 0.907  |
| .000   | 0.85399 | 0.85596 | 0.85985 | 0.86367 | 0.86754 | 0.87145        | 0.87537   | 0.87928 | 0.88332 | 0.88737 | 0.89150 | 0.89573 | 0.89996 | 0.904  |
| 5200.  | 0.85113 | 0.85307 | 0.85693 | 0.86075 | 0.86459 | 0.86848        | 0.87236   | 0.87626 | 0.88020 | 0.88426 | 0.88830 | 0.89253 | 0.89667 | 0.900  |
| 400.   | 0.84830 | 0.85026 | 0.85410 | 0.85792 | 0.86170 | 0.86559        | 0.86942   | 0.87328 | 0.87723 | 0.88120 | 0.88524 | 0.88935 | 0.89353 | 0.897  |
| 600.   | 0.84555 | 0.84748 | 0.85133 | 0.85512 | 0.85894 | 0.86275        | 0.86657   | 0.87036 | 0.87425 | 0.87824 | 0.88219 | 0.88629 | 0.89036 | 0.894  |
| 800.   | 0.84289 | 0.84478 | 0.84862 | 0.85239 | 0.85616 | 0.86000        | 0.86375   | 0.86751 | 0.87138 | 0.87529 | 0.87920 | 0.88328 | 0.88733 | 0.891  |
| 000.   | 0.84022 | 0.84217 | 0.84597 | 0.84971 | 0.85346 | 0.85726        | 0.86101   | 0.86474 | 0.86859 | 0.87241 | 0.87634 | 0.88032 | 0.88431 | 0.888  |
| 7200.  | 0.83764 | 0.83958 | 0.84337 | 0.84709 | 0.85082 | 0.85458        | 0.85830   | 0.86201 | 0.86581 | 0.86965 | 0.87346 | 0.87745 | 0.88137 | 0.885  |
| 7400.  | 0.83514 | 0.83704 | 0.84082 | 0.84454 | 0.84821 | 0.85199        | 0.85563   | 0.85938 | 0.86310 | 0.86689 | 0.87070 | 0.87461 | 0.87851 | 0.882  |
| 7600.  | 0.83265 | 0.83456 | 0.83832 | 0.84199 | 0.84570 | 0.84942        | 0.85305   | 0.85675 | 0.86049 | 0.86419 | 0.86799 | 0.87185 | 0.87569 | 0.879  |
| 7800.  | 0.83021 | 0.83211 | 0.83588 | 0.83954 | 0.84322 | 0.84689        | 0.85055   | 0.85.19 | 0.85787 | 0.86160 | 0.86528 | 0.86913 | 0.87295 | 0.876  |
| 8000.  | 0.82786 | 0.82975 | 0.83346 | 0.83712 | 0.84078 | 0.84446        | 0.84807   | 0.85167 | 0.85533 | 0.85901 | 0.86270 | 0.86646 | 0.87026 | 0.8740 |

into the bottom of the sample tube. Therefore, the water was held overnight at 100°C to insure separation. The mercury was prepared by degassing under vacuum, and was then held under water at 100°C for several days.

## RESULTS

The measured specific volumes of water are given in Table I using the known data near 1 atm.3,4 Pressures are expressed in bars, absolute, and temperature on the International Practical Temperature Scale of 1948. The data were taken at equal intervals assuming the pressure gauge to be linear and then the data were corrected for the nonlinearity of the gauge. Derivatives of the volumetric data for water were computed by successively fitting seven point quartics and then differentiating at the middle point, except at the edges of the block of data where the differentiation was carried out at the remaining points also. Seven point quadratics were fitted to the  $(\partial V/\partial T)_P$  to obtain the pressure correction to Cp. Tables of compressibility, thermal expansion coefficients  $(\partial S/\partial V)_T$ ,  $(\partial U/\partial V)_T$ , Cp and Cv are available as well as tables of S, U, and H based on the low-pressure values in the National Engineering Laboratory Steam Tables (1964).8 The heat capacities at 1 atm for water are those of Osborne, Stimson, and Ginnings.9

Our volumetric data for water can be compared with measurements made by three methods: the volumetric displacement method, the bellows method, and the method of integrating the compressibility computed from velocity of sound measurements. The most accurate data available for water are those of Kell and Whalley<sup>3,4</sup> who used the displacement method. At their maximum pressure of 1000 bar, our volumetric data lie between 0.000 and 0.010% below theirs over the whole temperature range. Much earlier Adams<sup>10</sup> used the displacement method to much higher pressures at 25°C. The present data lie 0.02%

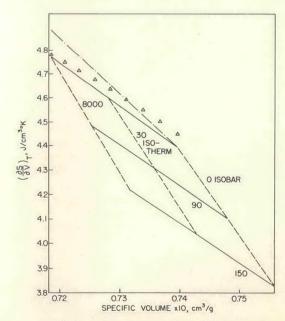



Fig. 3. Derivative of the entropy with respect to volume for mercury. △ Reference 21; -•-, hard-sphere theory.

TABLE II. Density of mercury, g/cm3.

| P, BARS | TEMPERATURE, C |         |         |                     |         |         |         |         |         |         |         |         |         |
|---------|----------------|---------|---------|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|         | 30.00          | 40.00   | 50.00   | 60.00               | 70.00   | 80.00   | 90.00   | 100.00  | 110.00  | 120.00  | 130.00  | 140.00  | 150-00  |
| 0.      | 13.5213        | 13.4969 | 13.4725 | 13.4482             | 13.4239 | 13.3997 | 13.3755 | 13.3514 | 13.3273 | 13.3033 | 13.2792 | 13.2553 | 13.2314 |
| 1000.   | 13.5755        | 13.5526 | 13.5279 | 13.5053             | 13.4868 | 13.4572 |         |         | 13.3871 | 13.3634 | 13.3389 | 13.3157 | 13. 292 |
| 2000.   | 13.6286        | 13.6052 | 13.5818 | 13.5590             | 13.5356 | 13.5127 | 13.4887 | 13.4659 | 13.4433 | 13.4200 | 13.3969 | 13.3750 | 13.3516 |
| 3000.   | 13.6797        | 13.6577 | 13.6340 | 13.6121             | 13.5882 | 13.5656 |         | 13.5206 | 13.4986 | 13.4745 | 13.4522 | 13.4306 | 13.4085 |
| 4000.   | 13.7302        | 13.7078 | 13.6846 | 13.6630             | 13.6404 |         | 13.5948 |         | 13.5515 | 13.5296 | 13.5071 | 13.4856 | 13.4627 |
| 5000.   | 13.7786        | 13.7569 | 13.7345 | 13.7127             | 13.6900 | 13.6683 | 13.6459 |         | 13.6035 | 13.5813 | 13.5590 | 13.5381 | 13.5167 |
| 6000.   | 13.8272        | 13.8044 | 13.7819 | AND ALL DESCRIPTION | 13.7393 | 13.7175 | 13.6948 |         | 13-6530 | 13.6325 | 13.6105 | 13.5896 | 13.5679 |
| 7000.   | 13,8729        | 13.8516 | 13.8294 | 13.8084             | 13.7865 | 13.7653 | 13.7438 |         | 13.7028 |         |         |         |         |
| 8000.   | 13.9181        | 13.8971 | 13.8749 | 13.8547             |         | 13.8126 | 13.7906 | 13.7705 | 13.7501 | 13.6811 | 13.6595 | 13.6402 | 13.6188 |

below Adam's specific volumes at 5000 bar and in almost exact agreement at 8000 bar. Bridgman's early displacement measurements<sup>11</sup> appear uncertain because his pressure scale was in error by 1% at 8000 bars. <sup>12</sup> After estimating the correction for the pressure scale, his volume at 8000 bar and 25°C is 0.17% greater than ours.

There are in general much larger discrepancies with the sylphon bellows techniques. Our specific volumes lie 0.6% below Bridgman's bellows data<sup>13</sup> at the same conditions as above. Similarly the data of Burnham et al.<sup>14</sup> deviate from ours in the same direction over the whole temperature range with a maximum deviation of 0.6% at 8000 bar.

A truly independent check of the PVT measurements comes from the compressibility computed from the velocity of sound. Figure 1 shows our compressibilities of water at 1 atm compared with those of Greenspan and Tschiegg<sup>15</sup> from the velocity of sound. The latter have been checked by Carnvale, Bowen, Basileo, and Sprenke<sup>16</sup> over the limited range 0.5-40°C and are in error by no more than 0.06%. The agreement with our data is quite good with only an occasional point off by 0.5%. Holton, Hagelberg, Kao, and Johnson<sup>17</sup> have measured the velocity of sound at high pressures and have integrated their compressibilities to obtain volumetric data. At 40°C and 8000 bar they agree within 0.01% of our data while at their highest temperature of 80°C and 8000 bar their volume is 0.1% larger than ours. The latter difference is equal to the uncertainty in their volumes at this high pressure.

Thus, the data derived from the velocity of sound measurements agree with our data to between 0.01% and 0.1%; the displacement methods generally agree to within this accuracy while the bellows methods all yield volumes which are high by 0.6%. We estimate

Table III. Coefficients for the equation of state of mercury.  $P = \sum_{l,m=0} C_{l,m} l^l \rho^m.^a$ 

| m | 0                        | 1                        | 2                        |
|---|--------------------------|--------------------------|--------------------------|
| l |                          |                          |                          |
| 0 | 7.421727×10 <sup>5</sup> | $-1.277089\times10^{5}$  | 5.378285×10 <sup>3</sup> |
| 1 | -58.65276                | +5.684101                | +0.1450404               |
| 2 | -0.3624357               | $+5.464785\times10^{-2}$ | $-2.129211\times10^{-3}$ |

<sup>&</sup>lt;sup>a</sup> Units: P, bars; t, °C; ρ, g/cm<sup>3</sup>.

the maximum error to be no more than 0.02% for our volumetric data for water and the precision is about 0.005%. The compressibility and thermal expansion coefficients are accurate to 0.5% except for the compressibility at very high pressure where the decrease of the compressibility causes the percentage error to increase somewhat.

The densities of mercury based on Biggs' values<sup>4</sup> at 1 atm are also given in Table II. Because the compressibility is about a tenth that of water, measurements were made at only 1000-bar intervals. Since the first derivatives of the mercury data have a precision of 1% and are slowly varying functions, all the data were fitted by a single equation of state given in Table III. Our calculated compressibilities at 1 atm are compared in Fig. 2 with the isothermal compressibilities derived from the velocity of sound data of Hubbard and Loomis<sup>18</sup> after Bett, Weale, and Newitt.<sup>19</sup> Our compressibilities lie about 1% above these values and are straddled by Kleppa's data.<sup>20</sup> Since the compressi-

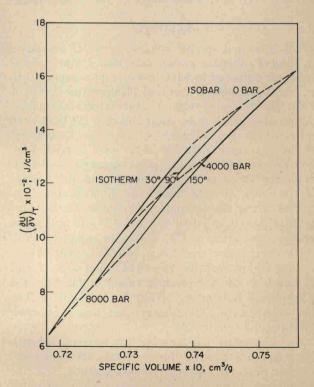



Fig. 4. Derivative of the internal energy with respect to volume for mercury.